
Model software user manual

The chiller model documented in section 4 of the report was coded in C++. The

property routines were developed as described in Appendix B of the report. This

appendix begins with a description of all the files that are a part of the software. This is

followed by a description of how the model is executed from within Matlab. Finally, the

process for simulating the more common faults in the system model is described.

Installation and file/directory structure:

The complete system model is packaged as a compressed (zip) file named

chillersim1p0.zip. Installation consists of un-compressing this file to a known directory

and including this directory and all sub-directories therein into Matlab’s search path.

Fig. 1 shows the file and directory structure seen upon uncompressing

chillersim1p0.zip:

Fig. 1: Screen-shot of unzipped chiller model files

Chiller.dll is the dynamically linked library containing all the routines required to

run the chiller components and system. The Geometries sub-directory contains the text

files with the physical constructional details of the various components of the chiller.

The IOFiles sub-directory contains the text files that are used by the chiller model during

initialization and execution. The Properties sub-directory contains the property tables

that are read into memory when the model is first launched.

Fig. 2 shows the text files in the Geometries directory.

Fig. 2: Screen-shot of the Geometries directory

COMPRESSORGEOMETRY.TXT: This file contains the details required for defining the

controller and compressor models. It is strongly recommended that these values not be

changed as they could result in unpredictable behavior of the compressor model and

hence the system model. Appended at the end of the file is a line-by-line description of

parameters.

VALVEGEOMETRY.TXT: This file identifies and lists the constructional parameters used in

the valve model. This information consists of (also see Appendix C) the maximum flow-

area of the valve, the angle of the valve needle, the discharge coefficient, spring

compliance, sensing bulb time constant and the minimum superheat pressure setting.

COOLINGLINEORIFICEGEOMETRY.TXT: This file identifies and lists the required

constructional parameters used to define the orifice in the cooling line which is the flow-

area of the orifice and the discharge coefficient.

CONDENSERGEOMETRY.TXT, EVAPORATORGEOMETRY.TXT: Since the evaporator and

condenser are based on the same model, the constructional information required to define

either one is the same and both of these text files are structured identically.

Referring to Fig. 3, the first line consists of two integer fields. The first integer

identifies whether the data that follows is for an evaporator (a value of ‘1’) or for a

condenser (a value of ‘2’). The second integer identifies the number of nodes that the

heat exchanger is discretized into.

Fig. 3: Heat exchanger geometry specification format

The second line contains information about the tube size and material, listed in the

order of inside diameter, outside diameter, length, specific heat and density. The sixth

entry in this line is a fouling factor that will be described in the section on fault

implementation.

All subsequent lines provide node specific information. The total number of lines

must correspond to the number of nodes specified as the second integer in the first line.

A mismatch will result in an error message and program termination. The lines are also

to be arranged in the order that corresponds to the nominal flow-direction of the

refrigerant through this heat exchanger with the first node being the one into which the

refrigerant enters the heat exchanger and the last node as the one from which it leaves.

Each line of node information consists of three fields. The first field is the integer

number of tubes encompassed in that node. The second field is the refrigerant volume in

that node. The third field is the distance between the node faces in the vertical direction,

i.e. in the direction of refrigerant flow.

SYSTEMGEOMETRY.TXT: This file lists the paths of all the other geometry text files and

can be used to load different component details located in different directories.

The sub-directories 4NodeGeometries and MaxNodeGeometries contain ready to

use condenser and evaporator geometry files. The former apply to each heat exchanger

being d

ation required to

initializ

Once the chiller executio s up the limiting motor

ower thereby modeling the soft-start motor protection feature of the physical controller.

iscretized into 4 nodes. The latter apply to each heat exchanger being discretized

into as many nodes as there are tube-rows in that heat exchanger (12 in case of the

evaporator and 13 in case of the condenser).

The IOFiles sub-directory is where the input to and output from the model are

stored. Fig. 4 shows the files within this sub-directory. The inform

e the system for start-up is stored in the text file(s) Initial_*.txt. The two possible

initialization modes are designated FULL and MINIMAL. Full initialization consists of

specifying the refrigerant pressure and refrigerant enthalpy1 in both heat exchangers.

Minimal initialization requires only three values, i.e., water temperatures leaving the

evaporator and condenser, and total refrigerant charge in the system. It is to be noted that

both of these modes of initialization pre-suppose that the system is in an equilibrium

condition corresponding to the instant before start-up. This means that whichever mode

is used to initialize the system, the controller begins with the compressor’s inlet guide

vanes in the minimum opening position and the RLA limit at its minimum.

Fig. 4: Screen-shot of IOFiles directory

n is begun, the controller gradually ramp

p

In other words, the chiller system model can only be executed in a way that begins with a

start-up. At the end of every 1s of simulation time, (i.e. the end of every loop of the

1 Please see Appendix B for more information on refrigerant properties. The refrigerant enthalpy is
referenced to 200 kJ/kg at 273.15K and the specific entropy to 1.00 kJ/kg-K at 273.15K, with the
refrigerant in saturated liquid condition.

second nested level described in section 5.1 of the report) the state of the system is saved

in the text file SystemState.txt.

There may exist a text file by name SavedState.txt. This file is created by the

program when the user requires the current state to be saved between sessions. Saving

and res

tion

INITIAL hen a minimal

initialization is required and is shown in Fig. 6.

or minimal initialization

toring the chiller state between sessions is described under the section on Usage.

The following are the descriptions of the text files in the IOFiles directory.

INITIAL_FULL.TXT: This is the file read by the chiller model when a full initialization is

required. The format of information in this file is as shown in Fig. 5.

Fig. 5: Screen-shot of text file format for full initializa

_MINIMAL.TXT: This is the file read by the chiller model w

Fig. 6: Screen-shot of text file format f

SYSTEMSTATE.TXT: The system’s states are saved in this file automatically every 1s of

simulation in

Line1: sim up

Line 2: evaporator pressure, condenser pressure, evaporator exit enthalpy, condenser exit

 temperature in oC ;

fer rate in kW and

in kg/s.

 the format shown in Fig. 7.

Fig. 7: Screen-shot of text file format for system states information

ulation time i.e. number of seconds that the model has run since start-

enthalpy, chilled water temperature.

Evaporator nodal states (as many lines as there are nodes in the evaporator) in the

following order:

nodal refrigerant enthalpy in kJ/kg;

nodal tube

nodal water temperature in oC ;

nodal refrigerant-side heat trans

nodal refrigerant mass flow rate

Conden are nodes in the condenser) in the same

rt-up, 2 = normal);

W and

n (γ).

Valve a

The Sa exists) has a format identical to the SystemState.txt file

sage:

ler function can be called in Matlab with either one argument on the right-hand-

chiller(n) (Single argument call)

r(t,u)

ingle argument call:

ser nodal states (as many lines as there

format as above for the evaporator nodal states

Compressor state in the following order:

controller operation mode (1 = sta

exit enthalpy in kJ/kg;

mass flow rate in kg/s;

motor power in kW;

motor heat losses in k

normalized guide-vane positio

nd bulb state in the following order:

bulb temperature in oC and

mass flow rate in kg/s.

vedState.txt file (if one

above. The text files in the Properties directory are as described in Appendix B.

U

The chil

side and none on the left, or with two arguments on the right-hand-side and two on the

left, as below:

y = chille (Two-argument call)

S

ith a single, integer argument the following actions are taken

depend

n reading from Initial_MINIMAL.txt.

When called w

ing on the value of the integer argument:

chiller(0) – performs a minimal initializatio

chiller(1) – performs a full initialization reading from Initial_FULL.txt

chiller(2) – saves the current state of the system to SavedState.txt.

chiller(3) – loads the state of the system saved in SavedState.txt.

If a repeat initialization call is made, the existing chiller state information is

simply overwritten. It is very important to note that all text filenames used by the

program are unique and are overwritten without warning. Therefore, if any of the text

files are desired by the user to remain unchanged, such files must be either renamed or

relocated into another directory. This apparent lack of user-friendliness in fact allows for

greater flexibility by allowing incorporation of the model into a program as a function

call that is self-contained and that requires no real-time inputs from the user.

The chiller can also be initialized by reloading state information saved from an

earlier session. This is done by entering ‘chiller(3)’ at the Matlab command prompt. On

executing this, the text file SavedState.txt in the IOFiles directory is read and the system

is restored to the state that existed when this text file was created. This file is created

automatically by the program upon entering ‘chiller(2)’ at the command prompt. Any

existing SavedState.txt file will be overwritten.

Two-argument-call:

After successful initialization, the chiller model can be executed by entering the

following:

y = chiller(t,u)
‘t’ and ‘u’ are the inputs required to drive the chiller model and ’y’ is the output

returned. The following is a description of these parameters.

t is an integer, positive number of seconds that the chiller is to be run;

u is the (5 x 1) vector of water-side boundary conditions in the order:

u[1] = Evaporator water entering temperature in oC
u[2] = Condenser water entering temperature in oC

u[3] = Chilled water set point temperature in oC

u[4] = Evaporator water mass flow-rate in kg/s

u[5] = Condenser water mass flow-rate in kg/s

y is a (29 x 1) vector of various system performance outputs, in the following

order:

y[1] = Chiller simulation time since start-up in s

y[2] = Evaporator pressure in kPa

y[3] = Condenser pressure in kPa
y[4] = Refrigerant flow rate through compressor in kg/s
y[5] = Refrigerant flow rate through valve only in kg/s
y[6] = Refrigerant flow rate through cooling line only in kg/s
y[7] = Sum of y[5] and y[6]
y[8] = Motor power in kW
y[9] = Motor heat losses in kW
y[10] = Condenser water-side heat transfer rate in kW
y[11] = Evaporator water-side heat transfer rate in kW
y[12] = Evaporator leaving water temperature (chilled water temperature) in oC

y[13] = Condenser leaving water temperature in +C

y[14] = Superheat in oC
y[15] = Sub-cooling in oC
y[16] = Condenser refrigerant mass imbalance in kg

y[17] = Evaporator refrigerant mass imbalance in kg

y[18] = Energy balance across compressor in kW
y[19] = Energy balance across condenser in kW
y[20] = Energy balance across evaporator in kW
y[21] = Refrigerant specific enthalpy leaving evaporator in kJ/kg

y[22] = Refrigerant specific enthalpy leaving compressor in kJ/kg
y[23] = Refrigerant specific enthalpy leaving condenser in kJ/kg
y[24] = Refrigerant specific enthalpy entering evaporator in kJ/kg
y[25] = Valve lift in m
y[26] = Valve flow area in m2
y[27] = Refrigerant mass in condenser in kg
y[28] = Refrigerant mass in evaporator in kg
y[29] = Total refrigerant mass in the system in kg

The usage of the model is illustrated by a series of examples described below and

included as m-files with the software. These m-files can be used as templates by the user.

Example 1 (Ex1.m): Start-up in fault-free condition:

This example demonstrates the preparatory steps that precede execution of the

model, followed by the actual execution of the chiller model through the start-up. When

the steady-state is reached, the execution is stopped and the state of the system at that

time is saved for future use.

Step 1- System Definition: The default heat-exchanger geometry is used, i.e., as defined

in the files in the Geometries directory.

Step 2 – Initialization: The default initialization of Initial_FULL.txt is used.

Step 3 – Boundary conditions: The u vector is defined for the start-up period. For

simplicity, it is assumed to remain constant during the complete start-up region. The

desired set point is 10oC. The normal water-flow rates of 13.2kg/s in the evaporator loop

and 16.7kg/s in the condenser water loop are used. The evaporator return water

temperature is 16oC and the condenser return water temperature is 30oC.

Referring to the code in Ex1.m, (Fig. 8) line 4 is the FULL initialization step.

This is followed by the setting of the water-side boundary conditions. The chiller output

plotting rate is specified in line 29. With this information, the chiller execution loop is

begun at line 34. For certain combinations of initial conditions and entering water

temperature change rates during early (<150s) start up, it has been found that the model

fails to converge. A full characterization of this numerical issue is in progress, but it can

be overcome by gradually and linearly ramping the entering water temperature from the

initial condition to the final value over the first 120s-150s. This is shown in lines 39-43.

Line 44 updates the input vector u and is followed by the execution of the chiller

through a 10s loop. The output of the chiller is recorded at every 1s and saved in the

output array which is saved to the disk every 10s (line 57). The 0.1s pause at line 59 is

required only to allow the figure plots to refresh. The final state of the chiller is saved

(line 62) into SavedState.txt for future use. Fig. 9 shows selected output of this example.

Fig. 8: m-code of Example 1.

Fig. 9: Output plot of selected chiller parameters in Example 1.

During the first 90s of the simulation the model uses a fixed value of polytropic

efficiency for the compressor because the map (eqn. 20) does not apply during that time.

This results in a low compressor flow-rate and therefore a low power prediction. This

also slows down the early response of the pressures and water temperatures. Once the

efficiency map becomes applicable (at 90s), the system’s response is seen to change

significantly. Thereafter, the solution proceeds smoothly to the steady state. The linear

power variation up to ~500s is the effect of the current limit imposed by the controller

which prevents the compressor from delivering large flow-rates to rectify the large initial

chilled water temperature error.

Example 2 (Ex2.m): Evaporator water entering temperature change in fault-free

condition

This example demonstrates the revival of a system state from an earlier saved state2,

followed by executing the system model by driving it through a transient triggered by a

2oC step drop in the evaporator return water temperature. The step-change occurs 50s

after the start of the execution. When steady-state is reached again (150s later), the

execution stops and the system state is saved. Fig. 11 shows the m-code for this example.

The significant differences are the initialization, which now is done by loading the by

loading the chiller state from the earlier saved state (line 4), the way the boundary

conditions are updated in lines 40-43 and the boundary condition updation and result

plotting sampling time (line 29) which is now done every 2s. Fig. 10 shows the output

for this example.

2 It is assumed here that the text file SavedState.txt is as was saved at the end of Example 1. If this is not
the case, move the SavedState.txt file (if one exists) to another location on the disk, copy the file
SavedState_1000.txt from the IOFiles directory to the Chillersim directory and rename it SavedState.txt.

Fig. 10: Output plot of selected chiller parameters in Example 2.

Fig. 11: m-code of Example 2

A drop in evaporator entering water temperature, keeping the same chilled water

set-point and water-flow rate, corresponds to a drop in the building load. This results in

lesser heat transfer to the refrigerant in the evaporator. This causes the leaving water

temperature to drop below the set-point thus far maintained, as seen in Fig. 10. The

reduced evaporator capacity implies that the motor now has to deliver lesser power and

the condenser has to reject lesser heat to the cooling water. The stair-step reduction in

motor power is caused by the step-and-wait action of the controller that now responds to

the negative error in chilled water temperature. The reduced compressor flow rate and

necessary condenser heat duty result in the lower condenser pressure and condenser

leaving water temperature.

Example 3 (Ex3.m): Evaporator and condenser water entering temperature change in

fault-free condition:

This example is a repeat of Example 2, with the difference that the condenser

entering water temperature is also changed (increased) by 2oC during the transient

triggered by a 2oC drop in evaporator return water temperature. The m-code can be seen

in Ex3.m. Fig. 12 shows the output for this combination transient.

The increased condenser water temperature results in a higher (than in Example

2), condenser pressure and motor power. The higher condenser pressure is caused by the

need to sustain the temperature difference between the refrigerant and (the now warmer)

water in the condenser which will allow the required heat transfer rate. The stabilized

condenser leaving water temperature is also seen to be higher as a result. The motor

power is higher because of the increased pressure difference that the compressor now

needs to work against.

The condenser leaving water temperature is seen to first drop, in response to the

reduced evaporator entering water temperature, and then increase because of the increase

in the condenser entering water temperature. The chilled water temperature also

responds similarly but the controller manages to return it to the un-changed set-point.

Fig. 12: Output plot of selected chiller parameters in Example 3.

Example 4(Ex4.m): Evaporator and condenser water entering temperature change and

chilled water set-point temperature change in fault-free condition:

This example includes a 2oC increase in the chilled water set-point temperature

into the boundary conditions imposed on Example 3. The system begins with the same

initial condition as exists at the end of Example 1 (see footnote on pg. 13). Fig. 13 shows

the output. Note the large drop in motor power with the reduced load caused by a smaller

evaporator return water temperature as well as increased set point temperature. The

chilled water temperature settles down to the new set point stably. The evaporator

pressure shows some small scale transients between 100 and 120s. This is caused by the

dynamics in the valve.

Fig. 13: Output plot of selected chiller parameters in Example 4

Fault simulation

The preceding examples demonstrate the use of the model and its output for the

fault-free condition. This section demonstrates how the system performance can be

generated with faults introduced. The following faults can be emulated in the system

model:

(a) Up to 40% reduction in water flow-rates in one or both heat-exchangers

(b) Up to 20% refrigerant undercharge in the system

(c) Up to 20% refrigerant overcharge in the system

(d) Up to 45% fouling in one or both heat-exchangers

Example 5 (Ex5.m) Reduced water flow rates:

This fault can is introduced simply by altering the values entered in the input

vector u above. This fault can be introduced either as a fully-developed one or as a

gradually developing one. The nominal water flow-rates are 13.2 kg/s in the evaporator

water loop and 16.7 kg/s in the condenser water loop. This example demonstrates the

reduction in condenser flow-rate as a gradually developing fault. Water flow-rate

reduction in the evaporator loop, or in both evaporator and condenser water loops, can

also implemented in the same manner.

The system begins at a state as at the end of Example 1. At this point in time, the

condenser water flow rate is at its normal value. Ten seconds after the execution starts

the fault begins to develop. Over the next 180s the flow rate drops linearly to 60% of the

normal, i.e., 10 kg/s. Fig. 14 shows the output of this simulation.

Fig. 14: Output plot of selected chiller parameters in Example 5

As expected, the reduced water flow rate results in lesser heat transfer rate on the

water side in the condenser. This necessitates a higher temperature difference between

the refrigerant and the water, which is achieved by a higher condenser pressure. The

evaporator pressure is virtually unchanged. The motor power increases because of the

higher pressure difference across the compressor.

Example 6 (Ex6.m): Charge variation:

Refrigerant undercharge and overcharge are implemented in the same manner,

i.e., through the initial enthalpy distribution when using a full initialization or by simply

specifying the total refrigerant charge when using a minimal initialization. The

refrigerant charge quantity normal for the system model is 124.7 kg (see section Error!

Reference source not found.). Varying the magnitude of these faults while the model

executes is not incorporated in the present code.

Fig. 15: Output plot of selected chiller parameters in Example 6

In this example, the system is initially charged with 80% of the nominal charge,

i.e., with 99.76 kg of refrigerant. This is done by altering the third field in

Initial_MINIMAL.txt. The model is run from start-up through to the achievement of

steady-state. The m-code for executing this example is identical to that of Example 1.

Fig. 15 shows the output. In comparison with the output of Example 1 which is with the

correct refrigerant charge, the system pressures are seen to be lower as is the motor

power. Other parameters can be plotted by loading output.mat into the Matlab

workspace. The columns of output are indexed identically to the output vector y listed

earlier in this section.

Refrigerant overcharge can be similarly implemented by setting the value in

Initial_MINIMAL.txt. Alternatively, for either case of charge variation, the enthalpy

distribution can be set in Initial_FULL.txt and the chiller can be initialized by a single-

argument call with a value of 1. The refrigerant volumes of the heat exchangers can be

determined from their geometry files.

Example 7: Heat exchanger fouling:

Heat exchanger fouling is implemented by specifying fouling as a percentage loss

in heat transfer conductance or area. The fouling applies only to the water-side of the

tube. This fault parameter is entered along with the heat exchanger geometry, as the sixth

field of the second line in the geometry file shown circled in Fig. 16. The magnitude of

fouling cannot be altered during model execution in the present code. Any of the

example m-codes can be used with this change made in the geometry file.

Fig. 16: Screen-shot of condenser geometry file with 40% fouling introduced

Example 8 (Ex8.m): Boundary condition updation from file:

The final example m-file is the file used to execute the chiller model through the

data presented under the section on validation. This file demonstrates how the boundary

conditions stored in a text file on disk can be read at pre-determined intervals and used to

execute the chiller model. The user is encouraged to examine the code in this m-file as

much of it is self-explanatory.

Error handling and reporting

Error messages generated are broadly divided into those that are launched from

within the Matlab interface and those that are launched from within the model code. The

errors trapped within the model code are logged to a text file error1.log, which is created

automatically when the chiller model is run for the first time in any session. The Matlab

interface generated errors consist of the following:

1. ‘Invalid call to chiller routine’ – the number of arguments passed and returned

in the call to chiller does not match either the single-argument call format or

the two-argument call format described above.

2. ‘Cannot create engine’ – a chiller model could not be created in memory,

likely because of insufficient memory.

3. ‘System construction failed’ – defining the system components geometry

failed. This can occur if the paths to the geometry files have not been included

into Matlab’s search path or if any of the geometry files are of incorrect

format. In case of the latter, additional error information is logged to

error1.log.

4. ‘Initialization code needs to be an integer’ – the value passed in a single-

argument call to chiller was not an integer. Passing anything other than an

integer will trigger this error.

5. ‘Invalid argument value’ – the value passed in a single-argument call to chiller

was not any of 0,1,2 or 3. These are the only acceptable values for a single-

argument call.

6. ‘System state could not be saved’ – saving the system state in the text file

SavedState.txt failed. A possible cause of this is insufficient disk space.

7. ‘System state could not be loaded’ – loading a previously saved system state

failed. Possible causes of this are:

a. the file SavedState.txt was not found because the path was not included

into Matlab’s search path

b. the format of information in the file SavedState.txt is incorrect.

Additional error information is logged in error1.log.

c. one or more of the system components could not be initialized with the

data in SavedState.txt. Additional error information is logged in

error1.log.

8. ‘System initialization failed’ – the system components could not be initialized

with the data in Initial_FULL.txt. Possible causes are:

a. the file Initial_FULL.txt was not found because the path was not

included into Matlab’s search path

b. the format of information in the file Initial_FULL.txt is incorrect.

Additional error information is logged in error1.log.

c. one or more of the system components could not be initialized with the

data in Initial_FULL.txt. Additional error information is logged in

error1.log.

9. ‘Chiller not initialized’ – an attempt was made to use the chiller model

without performing an initialization.

10. ‘Chillersim error. Consult error log file for details’ – an error occurred in the

model code and additional error information has been logged in error1.log.

Fig. 17 shows an example of error information that is logged into error1.log. The error

entry shown is that of an error in the format of information provided in the initialization

file. The error messages are logged from local to global, i.e. the first error message

identifies the location in the code where the effect of the error was observed. Subsequent

error messages help identify the path through the code that was being executed at the

time the error occurred. Since the cause of the error can lie away from the point where its

effect is observed, the error message can only be generic and a full listing of these error

messages serves little purpose.

Fig. 17: Screen-shot of error log file with an example error entry

The error trapping structure has been designed to trap most of the common errors

that were conceived as possible. As usage of the model increases, additional information

will be available from users that will help identify errors and bugs not yet detected and

the code can be made more robust.

